Characterization of an adduct between CC-1065 and a defined oligodeoxynucleotide duplex.
نویسندگان
چکیده
CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis. The drug binds covalently through N-3 of adenine and lies within the minor groove of DNA. Previous studies indicated that CC-1065 reacted with adenine in DNA to yield a thermally labile product that could be used to reveal its sequence specificity. These studies also provided insight into a DNA sequence (5'-CGGAGTTAGGGGCG-3') which should bind one molecule of CC-1065 in an unambiguous manner. This sequence, which contains the CC-1065 adenine binding site within the sequence 5'-TTA-3' was chemically synthesized together with the complementary strand. CC-1065 reacted with the oligoduplex to give an adduct that maintained the B-DNA form and had a final CD spectrum similar to those of the CC-1065 complexes formed with calf thymus DNA. The above 14mer was 5' end-labelled with 32P, annealed with its complementary strand, reacted with CC-1065 and heated. Drug-mediated strand breakage was evaluated on a sequencing gel. A single break occurred in the labelled strands to give a fragment that migrated as an 8.5mer; subsequent piperidine treatment produced a fragment that migrated as a 7mer, which is the size expected from the known binding of CC-1065 at adenine in 5'-TTA-3' sequences.
منابع مشابه
CC-1065 and the duocarmycins: unraveling the keys to a new class of naturally derived DNA alkylating agents.
Key studies defining the DNA alkylation properties and selectivity of a new class of exceptionally potent, naturally occurring antitumor antibiotics including CC-1065, duocarmycin A, and duocarmycin SA are reviewed. Recent studies conducted with synthetic agents containing deep-seated structural changes and the unnatural enantiomers of the natural products and related analogs have defined the s...
متن کاملCharacterization of a duocarmycin-DNA adduct-recognizing protein in cancer cells.
Duocarmycins have been reported to derive their potent antitumor activity through a sequence-selective minor groove alkylation of N3 adenine in double-stranded DNA. We have used gel mobility shift assays to detect proteins that bind to DNA treated in vitro with duocarmycin SA and identified a protein, named duocarmycin-DNA adduct recognizing protein (DARP), which binds with increased affinity t...
متن کاملMinor groove DNA alkylation directed by major groove triplex forming oligodeoxyribonucleotides.
We describe sequence-specific alkylation in the minor groove of double-stranded DNA by a hybridization-triggered reactive group conjugated to a triplex forming oligodeoxyribonucleotide (TFO) that binds in the major groove. The 24 nt TFOs (G/A motif) were designed to form triplexes with a homopurine tract within a 65 bp target duplex. They were conjugated to an N 5-methyl-cyclopropapyrroloindole...
متن کاملChemical and biological explorations of the family of CC-1065 and the duocarmycin natural products.
CC-1065, the duocarmycins and yatakemycin are members of a family of ultrapotent antitumour antibiotics that have been the subject of extensive investigations due to their mode of action and potential in the design of new anticancer therapeutics. The natural products and their analogues exert their effects through a sequence selective alkylation of duplex DNA in the minor groove at the N3 of ad...
متن کاملRapid and efficient hybridization-triggered crosslinking within a DNA duplex by an oligodeoxyribonucleotide bearing a conjugated cyclopropapyrroloindole.
The antitumor antibiotic CC-1065 binds in the minor groove of double-stranded DNA, and the cyclopropapyrroloindole (CPI) subunit of the drug alkylates adjacent adenines at their N-3 position. We have attached racemic CPI to oligodeoxyribonucleotides (ODNs) via a terminal phosphorothioate at either the 3'- or 5'-end of the ODNs. These conjugates were remarkably stable in aqueous solution at neut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 12 15 شماره
صفحات -
تاریخ انتشار 1984